GRAPHS AND MODELS

GRAPHING AN EQUATION

- Use a table of values to plot points
- Use basic knowledge of functions and end behavior
- Use a graphing calculator

FINDING INTERCEPTS

- *x*-intercept: Let y = 0
- *y*-intercept: Let x = 0

POINTS OF INTERSECTION

- Use linear combination
 - Use substitution

WHAT YOU SHOULD LEARN

- Sketch the graph of an equation.
- Find the intercepts of a graph.
- Test a graph for symmetry.
- Find the points of intersection of two graphs.

WHY YOU SHOULD LEARN IT

Graphs can represent reallife situations.

X-AXIS SYMMETRY	Y-AXIS SYMMETRY	ORIGIN SYMMETRY
(x, y) (x, -y)	(-x, y) (x, y)	(x, y) (-x, -y)
NEITHER	EVEN	ODD
Replace (x, y) with $(x, -y)$	Replace (x, y) with $(-x, y)$	Replace (x, y) with $(-x, -y)$

EXAMPLE 1 Sketching Graphs, Finding Intercepts, and Testing for Symmetry

a. $y - x = 2x^2$	b. $x = y^3$	c. $y = x+2 $
x-intercept(s):	x-intercept(s):	x-intercept(s):
y-intercept(s):	y-intercept(s):	y-intercept(s):
Symmetry:	Symmetry:	Symmetry:
EVANDLE 0 Finding Doints of	Intersection	

- EXAMPLE 2 Finding Points of Intersection
- **a.** 3x-2y = -44x+2y = -10**b.** $x = 3 - y^2$ y = x - 1

SECTION P.2

LINEAR MODELS AND RATES OF CHANGE

SLOPE	VERTICAL & HORIZONTAL	PARALLEL & PERPENDICULAR	
$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$	Vertical Line: $x = a$ Horizontal Line: $y = b$	Parallel: same slope Perp: neg reciprocal (normal)	
POINT-SLOPE FORM	SLOPE-INTERCEPT FORM	STANDARD FORM	
$y-y_1=m(x-x_1)$	y = mx + b	Ax + By = C	

WHAT YOU SHOULD LEARN

- Find the slope of a line passing through two points.
- Write the equation of a line with a given point and slope.
- Write equations of lines that are perpendicular and parallel to a line.

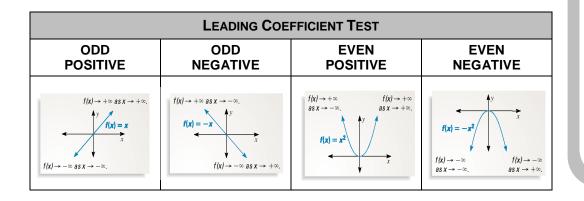
WHY YOU SHOULD LEARN IT

Interpret slope as a rate in a real-life application.

EXAMPLE 1 Finding Slopes

a. (1, 1)	b. (4, 8)	C. $(\frac{7}{8}, \frac{3}{4})$	d. (-3, 2)
(-2, 7)	(2, 8)	$(\frac{5}{4} - \frac{1}{4})$	(-3, 6)

EXAMPLE 2	Writing Equations of	Lines	
a. Point: (3, 5) Point: (-1, 1		Point: $(4, -7)$ Parallel to: $y = \frac{2}{3}x + 5$	c. Point: (-2, 8) Perpendicular to: $y = \frac{2}{7}x + 2$
Pt-Slope:		Pt-Slope:	Pt-Slope:
Slope-Int:		Slope-Int:	Slope-Int:
Standard:		Standard:	Standard:


EXAMPLE 3 Rates of Change

Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time t, $0 \le t \le 6$, is given by a function C, where t is measured in minutes. Selected values of C(t), measured in ounces, are given in the table below.

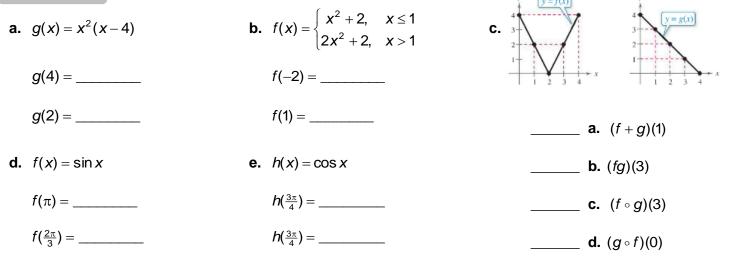
t (minutes)	0	1	2	3	4	5	6
C(t) (ounces)	0	5.3	8.8	11.2	12.8	13.8	14.5

Find the rate of change at t = 3.5 minutes.

FUNCTIONS AND THEIR GRAPHS

WHAT YOU SHOULD LEARN

- Use function notation to represent and evaluate a function.
- Find the domain and range of a function.
- Identify different graphs and transformations.
- Recognize combinations of functions.


WHY YOU SHOULD LEARN IT

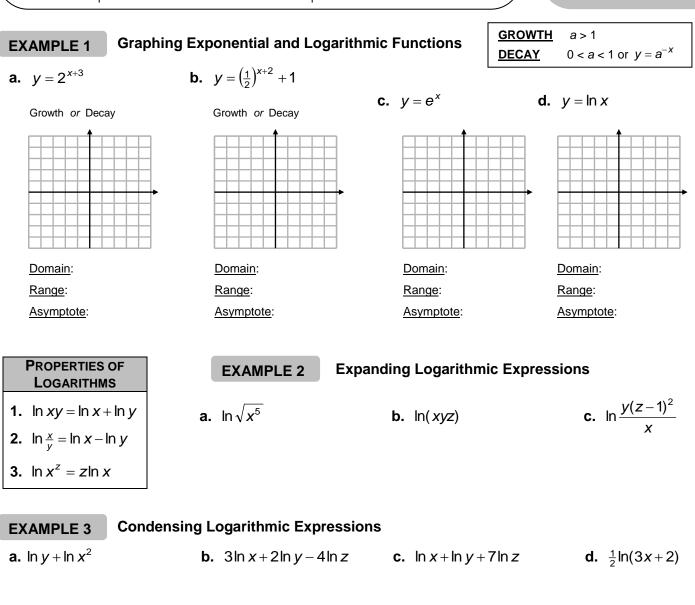
Recognizing functions lets you sketch quick graphs.

LINEAR	QUADRATIC	Сивіс	ABS VALUE	SQUARE ROOT	CUBE ROOT
f(x) = mx + b	$f(\mathbf{x}) = \mathbf{x}^2$	$f(\mathbf{x}) = \mathbf{x}^3$	$f(\mathbf{x}) = \mathbf{x} $	$f(x) = \sqrt{x}$	$f(\mathbf{x}) = \sqrt[3]{\mathbf{x}}$
RATIONAL	SINE	COSINE	TANGENT	SHIFT	REFLECT
$f(x) = \frac{1}{x}$	$f(x) = \sin x$	$f(x) = \cos x$	$f(x) = \tan x$	Up: $f(x) + c$ Down: $f(x) - c$ Right: $f(x - c)$ Left: $f(x + c)$	x-axis: $-f(x)$ y-axis: $f(-x)$ Origin: $-f(-x)$

VOCABULARY	Compositions
 Function – every input has exactly one output (vertical line test) 	$f \circ g = f(g(x))$
 Interval notation – [include] and (does not include) 	$g \circ f = g(f(x))$

EXAMPLE 1 Evaluating a Function

EXPONENTIAL & LOGARITHMIC FUNCTIONS


	EXPONENTIAL $f(x) = a^x$ or a^{-x}	NATURAL LOG $f(x) = \ln x$
Domain	$(-\infty, \infty)$	(0, ∞)
Range	(0, ∞)	(<i>−∞</i> , ∞)
y-intercept	(0, 1)	(1, 0)
Function	One-to-one	One-to-one

WHAT YOU SHOULD LEARN

- Graph exponential and natural logarithmic functions.
- Use properties of exponential and natural logarithm functions.
- Solve exponential and logarithmic equations.

WHY YOU SHOULD LEARN IT

Exponential & logarithmic functions are useful in reallife applications.

EXAMPLE 4	Solving Exponential and Logari	thmic Equations	
a. 5 ^{<i>x</i>} = 18	b. $\log_4(x+3) = 2$	c. $e^{x+1} = 7$	d. $\ln(2x-3)+4=9$