PRECALCULUS

SUMMER ASSIGNMENT – DUE THE 1ST DAY OF SCHOOL

Name	Date	 Hour	
		-	

DIRECTIONS

- Complete the following problems in this packet in the space provided <u>without a calculator</u> (unless specified otherwise within). Please use <u>pencil</u>! Show your work for full credit.
- If you need instruction or a review of the topics in this packet, go to http://www.khanacademy.org/. These are excellent videos that will re-teach and remind you how to go about the problems in this packet. You may also research online for websites or other videos.
- Circle or box your answers so that they can easily be identified or write them on the line.
- Bring this completed packet of problems with you to class on the first day of school. It will be collected! You should expect to have a quiz the first week of school over this review material.

FRACTIONS

1 – 10. Multiply or divide the fractions. Reduce your answer to lowest terms.

1. $\frac{2}{3} \cdot \frac{5}{7}$	2. $\frac{4}{5} \div \frac{3}{20}$	3. $\frac{5}{7} \cdot \frac{35}{3}$	4. $\frac{6}{11} \div \frac{3}{4}$	5. $\frac{\frac{4}{9}}{\frac{8}{9}}$
6. $\frac{32}{5} \cdot \frac{7}{8}$	7. $\frac{4}{3} \cdot \frac{11}{7}$	8. $\frac{\frac{3}{8}}{\frac{8}{5}}$	9. $\frac{2}{5} \div \frac{14}{15}$	10. $\frac{4}{11} \div \frac{11}{4}$

RADICALS

11 – 20. Simplify the radicals. Answers should not have radicals in the denominator.

11. √45	12. 5√10 · 3√2	13. $\frac{3}{\sqrt{7}}$	14. $\frac{5\sqrt{7}}{\sqrt{2}}$	15. $\frac{\frac{2}{\sqrt{2}}}{\frac{1}{2}}$
16. $\frac{\sqrt{6}}{\sqrt{2}}$	17. $\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$	18. 7√20 · 2√3	19. $\frac{4\sqrt{3}}{\sqrt{2}}$	20. √180

FACTORING

21 – 34. Factor the binomial or trinomial.

21.	$x^2 + 6x + 5$	22.	$10x^2 + 13x - 3$
23.	$2x^2 + 7x + 6$	24.	$x^2 - 7x + 12$
25.	$x^2 - 4x - 12$	26.	<i>x</i> ² - 81
27.	$12x^2 + 16x - 3$	28.	$x^2 + 11x - 12$
29.	$8x^2 + 2x - 3$	30.	25 <i>x</i> ² – 49
31.	$2x^2 + 11x + 15$	32.	$x^2 - 10x + 24$
33.	$3x^2 + x - 10$	34.	$10x^2 + 17x + 3$

ADDING AND SUBTRACTING RATIONAL EXPRESSIONS

35 – 40. Add or subtract the fractions using the least common denominator (LCD).

35.
$$\frac{2}{x+4} + \frac{3}{5}$$
 36. $\frac{4}{x-2} - \frac{3}{x+5}$ **37.** $\frac{2}{x} + \frac{7}{x+8}$

38.
$$\frac{x}{x+1} - \frac{5}{x-3}$$
 39. $\frac{1}{3} + \frac{3}{x} + \frac{4}{x^2}$ **40.** $\frac{x}{5(x+2)} + \frac{3}{x+2}$

FINDING TRIGONOMETRIC RATIOS (SOH CAH TOA)

41 – 42. Find the trigonometric ratios. Leave your answer as a fraction. Simplify radicals.

PYTHAGOREAN TRIPLES

MEMORIZE these Pythagorean triples that are commonly used in trigonometry.

(A Pythagorean triple is a set of three positive integers that satisfy the Pythagorean Theorem.)

3, 4, 5	6, 8, 10	5, 12, 13	8, 15, 17	7, 24, 25
---------	----------	-----------	-----------	-----------

RIGHT TRIANGLES – REAL LIFE APPLICATIONS WITH TRIG RATIOS (SOH CAH TOA)

EXAMPLE

- **A.** A surveyor is standing 115 feet from the base of the Washington Monument. The surveyor measures the angle of elevation to the top of the monument as 78.3°.
 - Draw and label a right triangle.

43. A ladder 20 feet long leans against the side of a house. Find the height from the top of the ladder to the ground if the angle of elevation of the ladder is 80° .

- How tall is the Washington Monument?
 Decide which trigonometric function to use
 - · Cross multiply and make sure you are in DEGREE mode

$$\tan 78.3^\circ = \frac{x}{115}$$

 $x = 115 \cdot \tan 78.3^\circ$
 $x = 555.31 ft$

44. A swimming pool is 20 m long and 12 m wide. The bottom of the pool is slanted so that the water depth is 1.3 m at the shallow end and 4 m at the deep end. Find the angle of depression.

20 m [1.3 m 2.7 m Angle of depression

Note: To find an angle measurement, use the 2^{nd} button.

SOLVING RIGHT TRIANGLES – PYTHAGOREAN THEOREM WITH TRIG RATIOS (SOH CAH TOA)

45 – 48. Solve the right triangle – find all the sides and all the angles. Use a <u>CALCULATOR</u> to round to 2 digits past the decimal point.

EXAMPLES

		B
A. $\angle B = 71^\circ$, b	= 24	a a c
∠A = 180°-	۹0 [°] -٦١ [°] = ۱۹	
tan 71° 5	24 S	
<u>a.tan71°=</u>	24 0	$\frac{1}{1} \cdot \frac{1}{1} = 24$
$tan 71^{\circ}$ $a = 8$	7.26	C = 25.38
∠A = 	∠B= 7 1°	$\angle C = 90^{\circ}$
a=8.26	b=24	c=25.38

a ² +12 ² = 20 ²
a ² +144 = 400
Q = 10

B. *b* = 12, *c* = 20

To find an angle measurement, use the 2ND button on your calculator

$\cos A = \frac{12}{20} \longrightarrow \cos^{-1}\left(\frac{12}{20}\right) = 53.13^{\circ}$					
∠A = 53.13°	∠ <i>B</i> = 36.87°	∠c = 90°			
a = 6	b = 2	c = 20			

45. $\angle A = 52^{\circ}, c = 15$

46.	a =	6,	b	=	1(C
-----	-----	----	---	---	----	---

∠A =	∠ <i>B</i> =	∠ <i>C</i> =
<i>a</i> =	<i>b</i> =	C =

∠A =	∠ B =	∠ <i>C</i> =
a =	<i>b</i> =	C =

47. *a* = 4, *c* = 9

48.	$\angle B = 20$)°,	<i>a</i> = 30
-----	-----------------	-----	---------------

∠A =	∠ <i>B</i> =	$\angle C =$
<i>a</i> =	<i>b</i> =	C =

∠A =	∠ <i>B</i> =	∠ <i>C</i> =
<i>a</i> =	<i>b</i> =	C =