\qquad Date \qquad Hour \qquad

DIRECTIONS

- Complete the following problems in this packet in the space provided without a calculator (unless specified otherwise within). Please use pencil! Show your work for full credit.
- If you need instruction or a review of the topics in this packet, go to http://www.khanacademy.org/. These are excellent videos that will re-teach and remind you how to go about the problems in this packet. You may also research online for websites or other videos.
- Circle or box your answers so that they can easily be identified or write them on the line.
- Bring this completed packet of problems with you to class on the first day of school. It will be collected! You should expect to have a quiz the first week of school over this review material.

FRACTIONS

1-10. Multiply or divide the fractions. Reduce your answer to lowest terms.

1. $\frac{2}{3} \cdot \frac{5}{7}$	2. $\frac{4}{5} \div \frac{3}{20}$	3. $\frac{5}{7} \cdot \frac{35}{3}$	4. $\frac{6}{11} \div \frac{3}{4}$	5. $\frac{\frac{4}{9}}{\frac{8}{9}}$
6. $\frac{32}{5} \cdot \frac{7}{8}$	7. $\frac{4}{3} \cdot \frac{11}{7}$	8. $\frac{\frac{3}{8}}{\frac{8}{5}}$	9. $\frac{2}{5} \div \frac{14}{15}$	10. $\frac{4}{11} \div \frac{11}{4}$

Radicals

11-20. Simplify the radicals. Answers should not have radicals in the denominator.

11. $\sqrt{45}$	12. $5 \sqrt{10} \cdot 3 \sqrt{2}$	13. $\frac{3}{\sqrt{7}}$	14. $\frac{5 \sqrt{7}}{\sqrt{2}}$	15. $\frac{\frac{2}{\sqrt{2}}}{\frac{1}{2}}$
16. $\frac{\sqrt{6}}{\sqrt{2}}$	17. $\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$	18. $7 \sqrt{20} \cdot 2 \sqrt{3}$	19. $\frac{4 \sqrt{3}}{\sqrt{2}}$	20. $\sqrt{180}$

FACTORING

21-34. Factor the binomial or trinomial.
21. $x^{2}+6 x+5$
22. $10 x^{2}+13 x-3$
23. $2 x^{2}+7 x+6$
24. $x^{2}-7 x+12$
25. $x^{2}-4 x-12$ \qquad 26. $x^{2}-81$
\qquad 27. $12 x^{2}+16 x-3$
28. $x^{2}+11 x-12$
\qquad 29. $8 x^{2}+2 x-3$
30. $25 x^{2}-49$
31. $2 x^{2}+11 x+15$
32. $x^{2}-10 x+24$
\qquad 33. $3 x^{2}+x-10$ \qquad 34. $10 x^{2}+17 x+3$

Adding and Subtracting Rational Expressions

35 - 40. Add or subtract the fractions using the least common denominator (LCD).
35. $\frac{2}{x+4}+\frac{3}{5}$
36. $\frac{4}{x-2}-\frac{3}{x+5}$
37. $\frac{2}{x}+\frac{7}{x+8}$
38. $\frac{x}{x+1}-\frac{5}{x-3}$
39. $\frac{1}{3}+\frac{3}{x}+\frac{4}{x^{2}}$
40. $\frac{x}{5(x+2)}+\frac{3}{x+2}$

41 - 42. Find the trigonometric ratios. Leave your answer as a fraction. Simplify radicals.

$\sin Z=$
$\cos Z=$
$\tan Z=$

$\sin C=$
$\cos C=$
$\tan C=$

PYTHAGOREAN TRIPLES

MEMORIZE these Pythagorean triples that are commonly used in trigonometry.
(A Pythagorean triple is a set of three positive integers that satisfy the Pythagorean Theorem.)
3, 4, 5
$6,8,10$
$5,12,13$
$8,15,17$
7, 24, 25

Right Triangles - Real Life Applications with Trig Ratios (SOH CAH TOA)

EXAMPLE

A. A surveyor is standing 115 feet from the base of the Washington Monument. The surveyor measures the angle of elevation to the top of the monument as 78.3°.

- Draw and label a right triangle.

115 ft
43. A ladder 20 feet long leans against the side of a house. Find the height from the top of the ladder to the ground if the angle of elevation of the ladder is 80°.

- How tall is the Washington Monument?
- Decide which trigonometric function to use
- Cross multiply and make sure you are in DEGREE mode

$$
\begin{gathered}
\tan 78.3^{\circ}=\frac{x}{115} \\
x=115 \cdot \tan 78.3^{\circ} \\
x=555.31 \mathrm{ft}
\end{gathered}
$$

44. A swimming pool is 20 m long and 12 m wide. The bottom of the pool is slanted so that the water depth is 1.3 m at the shallow end and 4 m at the deep end. Find the angle of depression.

Note: To find an angle measurement, use the $2^{\text {nd }}$ button.

Solving Right Triangles - Pythagorean Theorem with Trig Ratios (SOH CAH TOA)

45-48. Solve the right triangle - find all the sides and all the angles.

Use a CALCULATOR to round to $\mathbf{2}$ digits past the decimal point.

EXAMPLES

A. $\angle B=71^{\circ}, b=24$

$$
\angle A=180^{\circ}-90^{\circ}-71^{\circ}=19^{\circ}
$$

$\tan 71^{\circ}=\frac{24}{a} \quad \sin 71^{\circ}=\frac{24}{c}$
$\frac{a \cdot \tan 71^{\circ}}{\tan 71^{\circ}}=\frac{24}{\tan 71^{\circ}} \quad \frac{c \cdot \sin 71^{\circ}}{\sin 71^{\circ}}=\frac{24}{\sin 71^{\circ}}$

$$
a=8.26 \quad c=25.38
$$

$\angle A=19^{\circ}$	$\angle B=71^{\circ}$	$\angle c=90^{\circ}$
$a=8.26$	$b=24$	$c=25.38$

45. $\angle A=52^{\circ}, c=15$

$\angle A=$	$\angle B=$	$\angle C=$
$a=$	$b=$	$c=$

47. $a=4, c=9$

48. $\angle B=20^{\circ}, a=30$

$\angle A=$	$\angle B=$	$\angle C=$
$a=$	$b=$	$c=$

$\angle A=$	$\angle B=$	$\angle C=$
$a=$	$b=$	$c=$

